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It is very likely that a good number of JFM readers will be misled by this book’s
title. The title will suggest to some that it is focused on topics like those found in Joe
Pedlosky’s Geophysical Fluid Dynamics or perhaps Adrian Gill’s Atmosphere-Ocean
Dynamics. The reader will quickly discern that this is not the case – but this does not
mean that the title is inaccurate. Rather, Mathematical Geophysics: An Introduction
to Rotating Fluids and the Navier-Stokes Equations is concerned with the rigorous
analysis of the Navier–Stokes equations, facing up to fundamental issues such as
existence, uniqueness and regularity of solutions.

More specifically, this book describes developments in the study of quantitative
and qualitative features of solutions in the presence of rotation. In that regard it
complements classic monographs on modern mathematical analysis of incompressible
(and largely non-rotating) viscous flows such as those by Constantin & Foias (1988)
and Temam (1995) while adding to those works in terms of topics of interest for
applications in geophysical fluid dynamics. After a brief (just 14 page) summary of
the physical motivation for studying fluid dynamics in rotating frames in Part I, Math-
ematical Geophysics contains a complete review of the classical theory of weak and
strong solutions in the 70 pages comprising Part II, and then a thorough presentation
of recent developments for the analysis of rotating flows in the 130 pages of Part III.
The concluding 30 pages in Part IV, entitled ‘Perspectives’, contain discussions of very
recent developments on related systems as well as unsolved problems.

This kind of mathematical analysis is not normal fare for many JFM readers
although it can be argued that more of it should be. From the mathematical point
of view, the Navier–Stokes equations on many domains with a variety of applied
forces and a selection of initial data lead to globally well-posed problems. By this
we mean that the solutions are unique flows given by smooth functions of space and
time. The situation is generally satisfactory for two-dimensional problems where only
technical restrictions on data and driving are necessary to ensure that solutions are
well-behaved. In three spatial dimensions, however, the combinations of forces and
boundary and initial conditions that are known to produce smooth unique solutions
are all quite mild, corresponding in essence to weak driving and small initial data,
i.e. small Grashof and Reynolds numbers. For strong driving or large initial data
in three dimensions we only know that such unique and smooth ‘strong’ solutions
exist locally, i.e. for a finite (and in practice embarassingly small) interval of time
that shrinks as the Grashof and Reynolds numbers grow. Beyond that time all that
is known to exist are so-called ‘weak’ solutions, finite kinetic energy flows that satisfy
the Navier–Stokes equations in the sense of distributions but that are not (known to
be) smooth enough to ensure uniqueness or even to satisfy the basic power balance.

Many flows of interest for applications, notably many that are regarded as
turbulent flows, are not characterized by small Grashof or Reynolds numbers and
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the long-time behaviour of solutions is of central concern. In such cases the true
nature – the actual regularity and uniqueness – of solutions to the Navier–Stokes
equations remains a grand challenge for the mathematical community. Indeed, a
satisfactory answer to the question of whether or not all solutions of the three-
dimensional Navier–Stokes equations remain smooth and unique is worth $106 from
the Clay Mathematics Institute.† This question is not only of interest for abstract
analysis. From a practical point of view, for example, uniqueness and regularity
of solutions are necessary to establish convergence and a priori error estimates for
numerical schemes. From a fundamental physics point of view, a loss of regularity
in solutions would signal a breakdown of the separation-of-scales assumption that
goes into the Navier–Stokes equations’ derivation from the underlying Boltzmann
equation. Loss of uniqueness of solutions to the hydrodynamic equations violates the
principles of Newtonian determinism and, perhaps more importantly, obviates the
Navier–Stokes equations’ utility as a predictive theory.

Despite these challenges a wide variety of useful results concerning weak solutions,
results that apply as well to unique smooth solutions if they exist, can be obtained
by careful analysis. The most obvious care that must be taken is to keep in mind just
how much regularity is available, i.e. what function spaces the solutions reside in, so
that no ‘illegal’ calculations are performed and no unjustified conclusions are drawn
from merely formal manipulation of the equations. This approach may be unfamiliar
to many JFM readers but the presentation in Mathematical Geophysics, and especially
the full recounting of the classical results in Part II, is very well written. In this regard
I can recommend Part II as an excellent introduction to mathematical fluid dynamics
and the theory of weak solutions to the Navier–Stokes equations. Part II alone is
suitable as the basis for an advanced (postgraduate level) course or for self-instruction
by appropriately mathematically minded applied scientists.

What takes Mathematical Geophysics beyond other mathematical monographs and
secures its place within the modern literature is its treatment of strongly rotating
flows. JFM readers will be familiar with the Taylor–Proudman Theorem asserting
that flows in a rapidly rotating frame lose their dependence on the direction along
the axis of rotation. This effective ‘two-dimensionalization’ of three-dimensional flows
has profound effects on the fluid dynamics, of course, but it also has profound effects
on the analysis. Because two-dimensional flows are known to be better behaved than
three-dimensional flows, rotation can have a mollifying effect on potential problems
and, given sufficiently strong rotation, correspondingly stronger rigorous results can be
derived. That rotation may aid in the analysis of the three-dimensional Navier–Stokes
equations is thus not unexpected, but rigorous developments along these lines are
only relatively recent, dating to very late last century (Babin, Mahalov & Nicolaenko
1997). This is understandable given the singular nature of the vanishing Rossby
and/or Ekman number limits and the above-mentioned difficulties in the proper
mathematical handling of the three-dimensional Navier–Stokes equations. Moreover,
just as strong rotation brings new physics into the picture (e.g. Poincaré and Rossby
waves) it also brings new tools into play for the rigorous analysis of solutions (e.g.
Strichartz estimates for dispersive systems).

Mathematical Geophysics is recommended for those who are interested in modern
methods of rigorous analysis for the fundamental equations of incompressible fluid
mechanics. Besides providing an excellent overview of the technical aspects of

† See the website 〈http://www.claymath.org/millennium/Navier-Stokes Equations/〉.
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Navier–Stokes analysis, the authors have done an admirable job of explaining
the physical effects – or at least the physical intuition – behind the analysis of
rotating flows. An appropriate background in partial differential equations and
functional analysis, i.e. a background typically possessed by mathematical physicists
or analysis-oriented applied mathematicians, is necessary to appreciate everything that
the monograph has to offer. However, less well-prepared but adequately dedicated
readers will gain an understanding of the motivations and methods of this community
of mathematical researchers. A word of warning: definitions must be carefully heeded
and readers cannot assume that familar words always correspond to the most familar
concepts. For example when the authors say that a solution is ‘stable’ they can mean
either that it exhibits continuous dependence on initial data and/or parameters or
that perturbations decay. There is no ambiguity, though, and a careful reading will
leave no doubt.
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